pressure bounds derivations
- pressure ranges from midpoints - symbol - description - unit - variable name - \(p(i)\) - pressure - \(Pa\) - pressure {:,vertical} - \(p^{B}(i,l)\) - pressure boundaries (\(l \in \{1,2\}\)) - \(Pa\) - pressure_bounds {:,vertical,2} - The pattern : for the dimensions can represent {time}, or no dimension at all. \begin{eqnarray} p^{B}(1,1) & = & e^{\frac{3\ln(p(1)) - \ln(p(2))}{2}} \\ p^{B}(i,1) & = & e^{\frac{\ln(p(i-1)) + \ln(p(i))}{2}}, 1 < i \leq N \\ p^{B}(i,2) & = & p^{B}(i+1,1), 1 \leq i < N \\ p^{B}(N,2) & = & e^{\frac{3\ln(p(N)) - \ln(p(N-1))}{2}} \end{eqnarray}- This formula applies if the harp option - regrid_out_of_boundsis set to- nanor to- extrapolate. If the option is set to- edgethen the first and last boundary value are set to the midpoints (\(p^{B}(1,1) = p(1)\), \(p^{B}(N,2) = p(N)\)).