volume mixing ratio derivations
- volume mixing ratio from number density - symbol - description - unit - variable name - \(n\) - number density of total air - \(\frac{molec}{m^3}\) - number_density {:} - \(n_{x}\) - number density for air component x (e.g. \(n_{O_{3}}\)) - \(\frac{molec}{m^3}\) - <species>_number_density {:} - \(\nu_{x}\) - volume mixing ratio for air component x with regard to total air - \(ppv\) - <species>_volume_mixing_ratio {:} - The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all. \[\nu_{x} = \frac{n_{x}}{n}\]
- volume mixing ratio from mass mixing ratio - symbol - description - unit - variable name - \(M_{air}\) - molar mass for total air - \(\frac{g}{mol}\) - molar_mass {:} - \(M_{x}\) - molar mass for air component x - \(\frac{g}{mol}\) - \(q_{x}\) - mass mixing ratio of quantity x with regard to total air - \(\frac{kg}{kg}\) - <species>_mass_mixing_ratio {:} - \(\nu_{x}\) - volume mixing ratio of quantity x with regard to total air - \(ppv\) - <species>_volume_mixing_ratio {:} - The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all. \[\nu_{x} = q_{x}\frac{M_{air}}{M_{x}}\]
- volume mixing ratio from partial pressure - symbol - description - unit - variable name - \(p\) - pressure - \(Pa\) - pressure {:} - \(p_{x}\) - partial pressure for air component x (e.g. \(p_{O_{3}}\)) - \(Pa\) - <species>_partial_pressure {:} - \(\nu_{x}\) - volume mixing ratio for air component x with regard to total air - \(ppv\) - <species>_volume_mixing_ratio {:} - The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all. \[\nu_{x} = \frac{p_{x}}{p}\]
- volume mixing ratio dry air from number density - symbol - description - unit - variable name - \(n_{dry\_air}\) - number density of dry air - \(\frac{molec}{m^3}\) - dry_air_number_density {:} - \(n_{x}\) - number density for air component x (e.g. \(n_{O_{3}}\)) - \(\frac{molec}{m^3}\) - <species>_number_density {:} - \(\bar{\nu}_{x}\) - volume mixing ratio for air component x with regard to dry air - \(ppv\) - <species>_volume_mixing_ratio_dry_air {:} - The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all. \[\bar{\nu}_{x} = \frac{n_{x}}{n_{dry\_air}}\]
- volume mixing ratio dry air from mass mixing ratio dry air - symbol - description - unit - variable name - \(M_{dry\_air}\) - molar mass for dry air - \(\frac{g}{mol}\) - \(M_{x}\) - molar mass for air component x - \(\frac{g}{mol}\) - \(\bar{q}_{x}\) - mass mixing ratio of quantity x with regard to dry air - \(\frac{kg}{kg}\) - <species>_mass_mixing_ratio_dry_air {:} - \(\bar{\nu}_{x}\) - volume mixing ratio of quantity x with regard to dry air - \(ppv\) - <species>_volume_mixing_ratio_dry_air {:} - The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all. \[\bar{\nu}_{x} = \bar{q}_{x}\frac{M_{dry\_air}}{M_{x}}\]
- volume mixing ratio dry air from partial pressure - symbol - description - unit - variable name - \(p_{dry\_air}\) - partial pressure of dry air - \(Pa\) - dry_air_partial_pressure {:} - \(p_{x}\) - partial pressure for air component x (e.g. \(p_{O_{3}}\)) - \(Pa\) - <species>_partial_pressure {:} - \(\bar{\nu}_{x}\) - volume mixing ratio for air component x with regard to dry air - \(ppv\) - <species>_volume_mixing_ratio_dry_air {:} - The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all. \[\bar{\nu}_{x} = \frac{p_{x}}{p_{dry\_air}}\]